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Abstract. The interaction of superluminal radiation with matter in atomic bound-bound and bound-free
transitions is investigated. We study transitions in the relativistic hydrogen atom effected by superluminal
quanta. The superluminal radiation field is coupled by minimal substitution to the Dirac equation in a
Coulomb potential. We quantize the interaction to obtain the transition matrix for induced and spontaneous
superluminal radiation in hydrogen-like ions. The tachyonic photoelectric effect is scrutinized, the cross-
sections for ground state ionization by transversal and longitudinal tachyons are derived. We examine
the relativistic regime, high electronic ejection energies, as well as the first order correction to the non-
relativistic cross-sections. In the ultra-relativistic limit, both the longitudinal and transversal cross-sections
are peaked at small but noticeably different scattering angles. In the non-relativistic limit, the longitudinal
cross-section has two maxima, and its minimum is located at the transversal maximum. Ionization cross-
sections can thus be used to discriminate longitudinal radiation from transversal tachyons and photons.

PACS. 05.30.Ch Quantum ensemble theory – 32.80.Fb Photoionization of atoms and ions – 03.70.+k
Theory of quantized fields

1 Introduction

When considering superluminal quanta, we may try a
wave theory or a particle picture as starting point. The
latter has been studied for quite some time, but did not
result in viable interactions with matter [1–16]. Thus we
suggest to model tachyons as quantized wave fields with
negative mass-square, coupled by minimal substitution to
subluminal particles. Interaction with matter is indeed the
crucial point, after all, what else can one expect from a
theory of tachyons other than suggestions as to where to
search for them? We will maintain the best established
interaction mechanism, minimal substitution, by treating
tachyons like photons with negative mass-square, a real
Proca field minimally coupled to matter [17–20].

The superluminal energy flux can be split into a
transversal and a longitudinal component, and the dif-
ferent polarizations are quantized in different statistics
to obtain a positive definite energy operator; transver-
sal quanta are bosonic, longitudinal ones are fermionic.
The spin-statistics theorem and most other quantum field
theoretic no-go theorems are not applicable outside the
lightcone, as they assume microcausality, which means,
in a relativistic context, the non-existence of superlumi-
nal signal transfer [21,22]. This theory of superluminal
radiation is non-relativistic, invoking the absolute cosmic
spacetime, cf. [23,24] and Section 4 for more discussion on
the underlying spacetime view.

a e-mail: roman@geminga.org

We will consider hydrogenic systems and derive the
T -matrix and Einstein coefficients for tachyonic bound-
bound transitions. The superluminal radiation modes,
minimally coupled to the Dirac field in a Coulomb po-
tential, can be treated perturbatively in linear order, due
to the very small tachyonic interaction constant, the ra-
tio of tachyonic and electric fine structure constants being
αq/αe ≈ 1.4× 10−11, cf. [20]. The electromagnetic second
order contribution overpowers the tachyonic counterpart
by some twenty-two orders, so that elementary statisti-
cal procedures such as detailed balancing are sufficient for
the second quantization of the interaction. Linearization
on account of the tiny interaction will be used throughout,
there is no need to develop a perturbation theory beyond
the linear order. One can also reckon that the Lagrangian
of the Proca field is itself just the linearization of a non-
linear Born-Infeld type of Lagrangian, as this seems to be
the most straightforward way to achieve a finite classical
self-energy [25,26].

We will investigate superluminal bound-free transi-
tions, in particular the cross-sections for tachyonic ion-
ization of hydrogen-like ground states. We will study the
relativistic regime, high electronic ejection energies, espe-
cially the ultra-relativistic limit, large electronic Lorentz
factors. The ionizing superluminal quanta can be transver-
sally or longitudinally polarized, and we will determine the
angular extrema of the respective cross-sections. The scat-
tering angles at which the extrema occur crucially depend
on the polarization of the incident radiation, which can be
used to disentangle longitudinal and transversal quanta.
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In Section 2, we will set up the formalism, discuss the
Dirac equation coupled to the Proca field, the spectral
decomposition of the Dirac Hamiltonian, and the current
matrix. We will mainly work with 2-spinors, refraining
from manifest covariance at an early stage. In conjunc-
tion is Appendix A, where we examine the non-relativistic
limit, the Pauli equation coupled to the tachyon field, and
calculate matrix elements of the helicity operator.

In Section 3, we quantize the free tachyon field and
the interaction Hamiltonian. The transition matrix for
tachyonic bound-bound transitions in the relativistic hy-
drogen atom is derived. We calculate the tachyonic ioniza-
tion cross-sections of the ground state, taking into account
electron spin and relativistic ejection energies. We study
transversal and longitudinal ionization as well as the cor-
responding recombination cross-sections. The total cross-
sections are compared with the electromagnetic counter-
part, photoionization. We consider the ultra-relativistic
limit and determine the angular maxima of the transver-
sal and longitudinal cross-sections. We also derive the first
order correction to the non-relativistic limit in Born ap-
proximation. In this limit, the differences in the peak
structure of the transversal and longitudinal cross-sections
are even more pronounced than in the ultra-relativistic
regime, the transversal maximum coinciding with the lon-
gitudinal minimum. In Appendix B, we calculate the ma-
trix elements needed for the cross-sections and perform
the spin averaging. In Section 4, we present our conclu-
sions.

2 Superluminal radiation fields coupled
to spinor currents

We set up the Lagrange formalism to deal with superlu-
minal radiation modes coupled by minimal substitution
to spinor fields. We introduce the notation used in the ac-
tual calculations carried out in the next section, specifying
sign conventions, units, and normalizations; derivations
will mostly be skipped. The formalism is kept elemen-
tary and very explicit by employing 2-spinors and Pauli
matrices at an early stage in the spectral analysis. Non-
relativistic spinor currents coupled to the tachyon field are
studied in Appendix A.

The superluminal radiation field satisfies the Proca
equation, Fµν ,ν − m2

tA
µ = c−1jµ, where Fαβ = Aβ,α −

Aα,β , and jα is the subluminal current specified below.
The negative mass-square, −m2

t , makes the wave propa-
gation superluminal, and the tachyon mass mt is a short-
cut for mtc/�. This field equation can be derived from
the Lagrangian LP + Lint , where LP = − 1

4FµνF
µν +

1
2m

2
tAµA

µ and Lint = c−1Aµj
µ. Greek indices run from 0

to 3, Latin ones from 1 to 3, the sign convention for the
metric is ηµν = diag(−c2, 1, 1, 1).

The subluminal matter field satisfies the Dirac equa-
tion, γµ∇A

µψ+ (mc/�)ψ = 0, the spinor being coupled by
minimal substitution to the tachyonic vector potential,

Lψ = −i�c2
(

1
2
ψ̄γµ∇A

µψ − 1
2

(∇A∗
µ ψ̄

)
γµψ +

mc

�
ψψ̄

)
,

∇A
µ = ∂µ − iẽAem

µ − iq̃Aµ, q̃ = q/(�c), ẽ = e/(�c).
(2.1)

The asterisk in ∇A∗
µ indicates complex conjugation, ψ†

means transposition and complex conjugation (also for 2-
spinors and matrices), and ψ̄ = ψ†γ0. We have also in-
cluded an external electromagnetic potential Aem

µ in ∇A
µ ,

which will be treated non-perturbatively, and we will oc-
casionally use the shortcut ∇em

µ := ∂µ − iẽAem
µ . The elec-

tric and tachyonic charges carried by the spinor field are
denoted by e and q, respectively. We use the Heaviside-
Lorentz system, so that αe = e2/(4π�c) ≈ 1/137 and
αq = q2/(4π�c) ≈ 1.0 × 10−13 are the electric and tachy-
onic fine structure constants. We note the ratio αq/αe ≈
1.4×10−11, the tachyon massmt ≈ m/238 ≈ 2.15 keV/c2,
and the inverse Compton wave length mtc/� ≈ 1.09 ×
108 cm−1. These estimates are obtained from hydrogenic
Lamb shifts [20].

The coupling to an attractive Coulomb potential, V =
−Ze2/(4πr), is effected by the derivatives ∇A

0 = ∂0 +
i�−1V − iq̃A0 and ∇A

k = ∂k − iq̃Ak. Identifying the Dirac
Lagrangian Lψ with Lint , we find the current in the Proca
equation, jµ = −qc2ψ̄γµψ. We will use a set of Dirac
matrices, γµγν+γνγµ = 2ηµν , in standard representation,

γ0 =
1
ic

(
id 0
0 −id

)
, γk =

(
0 −iσk
iσk 0

)
, (2.2)

so that the charge density reads ρ = j0 = qψ†ψ. The Pauli
matrices σk are listed in (A.2), and this representation
will be used throughout, without further mentioning. The
Lagrangian Lψ in (2.1) has the dimension of an energy
density if ψ ∼ L−3/2, where L is the “box size”. We split
the Dirac equation into two coupled 2-spinor equations,

i�∇A
0

(
ϕ
χ

)
= −i�cσk∇A

k

(
χ
ϕ

)
+mc2

(
ϕ
−χ

)
, (2.3)

which is apparently effected by the substitution ψ =
(ϕ, χ)t in the manifestly covariant version of the Dirac
equation as stated above. The superscript “t” stands for
transposition, here just for typographical convenience.
This decomposition of the wave function into 2-spinors
ϕ and χ will extensively be used in the following, always
in conjunction with the standard representation (2.2). For
instance, the spinor current reads,

j0 = q(ϕ†ϕ+ χ†χ), jk = qc(χ†σkϕ+ ϕ†σkχ). (2.4)

We will need some more matrices of the Dirac algebra,

γ5 = icγ0γ1γ2γ3, β = icγ0, αk = −cγ0γk. (2.5)

We may write γ5 = σ1 and cγ0γ5 = σ2, as well as β =
σ3. Here, exceptionally, the Pauli matrices σk (as defined
in (A.2)) are to be understood as four-by-four matrices,
that is, their coefficients have to be multiplied by the two-
by-two unit matrix “id”, cf. (2.2). Moreover,

αk =
(

0 σk

σk 0

)
, iγkγ5 =

(
σk 0
0 −σk

)
,

αkγ5 =
(
σk 0
0 σk

)
, (2.6)



R. Tomaschitz: Quantum tachyons 243

and γ5 anticommutes with γµ. The 3-vectors αk and σk

will occasionally be denoted by α and σ. All matrices
defined in (2.2), (2.5) and (2.6) are hermitian, except for
the anti-hermitian γ0. The operator Σ := iγkγ5 will be
used to define spin and helicity.

We multiply the Dirac equation with γ0, and identify
the Hamiltonian by means of i�ψ,t = (Hem + H int )ψ,
where

Hem = −i�cαk∇em
k +mc2β − ec−1Aem

0 ,

Hint = −q(αkAk + c−1A0). (2.7)

The matrices αk and β are defined in (2.6) and (2.5).
We put � = c = 1, and consider the free Dirac Hamil-
tonian, H0 = −iαi∂i + mβ. In the free Dirac equa-
tion, i�ψ,t = H0ψ, we use the separation ansatz ψ =
ueiε(kx−ωkt), where ε = ±1 stands for positive/negative
frequency solutions. The frequencies ωk are defined pos-
itive throughout, for particles and antiparticles alike. In
momentum space, we thus arrive at the eigenvalue equa-
tion Ĥ0u = εωku, where Ĥ0 = (εαk + mβ). The dis-
persion relation, ωk =

√
k2 +m2, emerges as determi-

nant condition. In the rest frame, k = 0, ωk = m, we
find the solutions u′ =

√
m/ωk(ϕ′, 0)t if ε = 1, and

u′ =
√
m/ωk(0, χ′)t for ε = −1, where the 2-spinors

ϕ′and χ′ can be chosen arbitrarily. We will adopt the ar-
bitrary rest frame normalization u′†u′ = m/ωk. Primed
spinors and operators always refer to the rest frame. The
helicity operator, kΣ := −iγ5γmkm, cf. (2.6), commutes
with Ĥ ′

0 = mβ, so that we can simultaneously diagonalize
Ĥ ′

0u
′ = εmu′ and kΣu′ = ksu′ in the rest frame. The

latter equation reduces to (σk − ks)ϕ′
k,s = 0 for ε = 1

and to (σk+ks)χ′
k,s = 0 for ε = −1, and the determinant

condition requires s = ±1 in both cases. The spin points
in the direction of k if s = ε and in the opposite direction
if s = −ε, cf. (A.6). In the absolute spacetime manifested
by the cosmic microwave background and the expanding
galaxy grid, it is quite natural to use the wave vector of
the particle as a distinguished direction in its rest frame.
The (anti-)particle moves with velocity k/ωk in the cos-
mic reference frame; particles with s = 1 are polarized in
the direction of their propagation, and so are antiparticles
(i.e. negative frequency modes, ε = −1) with s = −1. The
direction of propagation is always k, for particles and an-
tiparticles alike, both species propagate forward in time,
and the negative energies of antiparticles can be dealt with
in second quantization, in the usual way, by anticommu-
tation.

Four-spinors in different inertial frames connect by a
similarity [27],

u = Su′, S = 2−1/2
(√

γ + 1 + υ0α
√
γ − 1

)
. (2.8)

Here, the primed and unprimed frames relate by a boost
with time component t′ = γ(t − υx) and Lorentz factor
γ = (1−υ2)−1/2. The matrices α = αk are defined in (2.6),
υ0 is the velocity unit vector, and S−1 = S(−υ0). We
choose the primed frame as the rest frame of the (anti-
)particle, which requires the identification ωk = mγ and

υ = k/ωk in (2.8). In the rest frame, the above separation
ansatz simplifies to ψ′ = u′eiεmt.

As pointed out after (2.7), the rest frame spinor for
particles (ε = 1) of momentum k and spin s reads u′ =√
m/ωk(ϕ′

k,s, 0)t, where the 2-spinor is subjected to (σk−
ks)ϕ′

k,s = 0. By applying the similarity (2.8) with υ =
k/ωk, we find, in the cosmic reference frame,

u =
(
ϕk,s
χk,s

)
=

1√
2ωk(ωk +m)

(
(ωk +m)ϕ′

k,s

skϕ′
k,s

)
, (2.9)

which solves Ĥ0u = ωku, cf. after (2.7). The same similar-
ity is used for antiparticles (ε = −1) of momentum k
and spin s, when transforming their rest frame spinor
u′ =

√
m/ωk(0, χ′

k,s)
t into the preferred cosmic frame,

u =
(
ϕk,s
χk,s

)
=

1√
2ωk(ωk +m)

( −skχ′
k,s

(ωk +m)χ′
k,s

)
.

(2.10)
This spinor solves Ĥ0u = −ωku. The primed rest frame
2-spinor satisfies (σk + ks)χ′

k,s = 0, cf. after (2.7), so
that we may define, arbitrarily, χ′

k,s = ϕ′
k,−s. The rest

frame normalization of the 2-spinors will be taken as
ϕ′†
k,sϕ

′
k,s = χ′†

k,sχ
′
k,s = 1, cf. (A.9), so that u†u = 1, which

gives a convenient normalization of the wave functions in
the cosmic reference frame, cf. after (2.12). (Complex con-
jugation and transposition is indicated by a superscript †,
for all quantities.)

We turn to the matrix elements of the 4-current,
jκmn = −qc2ψ̄nγκψm, and decompose them into 2-spinors
like in (2.4),

ρmn = q(ϕ†
nϕm +χ†

nχm), jmn = q(χ†
nσ

kϕm +ϕ†
nσ

kχm),
(2.11)

where ρmn = j0mn and jmn = jkmn. Here, we substitute the
wave functions,

ψn = (ϕn, χn)t = L−3/2un exp(iεn(knx − ωnt)), (2.12)

where the multi-index n = (kn, sn, εn) indicates mo-
mentum, spin and frequency sign as defined after (2.7).
We use the eigenfunctions un = (ϕk,s, χk,s)t of Ĥ0 as
stated in (2.9) and (2.10), with the helicity eigenfunc-
tions ϕ′

k,s and χ′
k,s = ϕ′

k,−s calculated in (A.9). Clearly,
(εω−εαk−mβ)un = 0, and the dispersion relation follows
by multiplying with (εω + εαk + mβ), cf. the beginning
of Appendix B.

For the remainder of this section, we will consider pos-
itive frequencies, εn = 1. We choose periodic boundary
conditions on a box of size L, so that k = 2πn/L, with
integer lattice points n ∈ Z3, which explains the normal-
ization of the wave functions (2.12) by a factor of L−3/2.
We further define ωmn := ωm−ωn, and kmn := km − kn,
and factorize off the time dependence in (2.11), ρmn =
ρ̃mne

−iωmnt and jmn = j̃mne−iωmnt. The time separated
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matrix elements are assembled via (2.9–2.12),

ρ̃mn(x) =
q

L3

(ωm +m)(ωn +m) + kmknsmsn

2
√
ωmωn(ωm +m)(ωn +m)

× ϕ′†
nϕ

′
me

ikmnx,

j̃mn(x) =
q

L3

(ωm +m)knsn + (ωn +m)kmsm
2
√
ωmωn(ωm +m)(ωn +m)

× ϕ′†
nσϕ′

me
ikmnx, (2.13)

where km =
√
ω2
m −m2. The 2-spinors ϕ′

m are defined
in (A.9).

The normalization of the wave functions (2.12), that
is, of the spinors um in (2.9) and (2.10) and of the he-
licity functions ϕ′

m in (A.9), gives
∫
L3 ρ̃mnd

3x = qδmn.
We have put � = c = 1 from (2.8) onwards. In (2.13) we
have to restore these units in a way that ρ̃mn ∼ qL−3

and j̃mn ∼ qcL−3. The spinors um and ϕ′
m as well as the

Pauli matrices stay dimensionless. The continuity equa-
tion, jκmn,κ = 0, reduces to ωmnρ̃mn(0) = kmn j̃mn(0) (no
summation here). This is consistent with the explicit for-
mulas (2.13), by virtue of the hermiticity of the Pauli ma-
trices and the eigenvalue equation (σkm − kmsm)ϕ′

m = 0
stated before (2.9).

The squared current matrix elements read, cf. (A.13),

|ρ̃mn|2 =
q2

L6

ωmωn +m2 + kmknsmsn
4ωmωnkmkn

× (kmkn + smsnkmkn),

∣∣∣̃jmn
∣∣∣2 =

q2

L6

ωmωn −m2 + kmknsmsn
4ωmωnkmkn

× (3kmkn − smsnkmkn). (2.14)

They simplify if summed over the “final” spin sn,

∑
sn=±1

|ρ̃mn|2 =
q2

L6

ωmωn +m2 + kmkn
2ωmωn

,

∑
sn=±1

∣∣∣̃jmn
∣∣∣2 =

q2

L6

3ωmωn − 3m2 − kmkn
2ωmωn

. (2.15)

The spin variable sm does not show here any more, so that
an average over the “initial” spin need not be considered.
In the diagonal, we find q2/L6 and q2υ2

m/L
6, respectively.

3 Ionization of hydrogenic ground states
by superluminal quanta

We explain the second quantization of the tachyon-
electron interaction, that is, of the Proca field with nega-
tive mass-square, minimally coupled to Dirac spinors. We
derive the transversal and longitudinal transition matri-
ces and calculate the tachyonic ionization cross-sections of

hydrogen-like ground states. These cross-sections will be
scrutinized in some detail, e.g., for ultra-relativistic elec-
tronic ejection energies. We study the Dirac equation in an
external electromagnetic potential, and treat the tachyon
field as perturbation in linear order,

i�ψ,t = (Hem +Hint)ψ, Hint: = −q(αkAk + c−1A0),

Hem : = −�ciαk∇em
k +mc2β − ec−1Aem

0 . (3.1)

The notation, the sign conventions, and the representa-
tion of the Dirac matrices employed in the appendices
are defined in Section 2. We introduce the Hamiltonian
densities Hem

ψ = ψ†Hemψ and Hint
ψ = ψ†Hintψ, the

latter can be written as Hint
ψ = −c−1Aκj

κ, with the 4-
current j0 = ρ = qψ†ψ and jk = qcψ†αkψ, cf. the be-
ginning of Section 2. The perturbation theory is based
on “free” wave functions satisfying the unperturbed Dirac
equation, i�ψ,t = Hemψ, in an electromagnetic poten-
tial. We will need the current functionals ρ(ψ, ϕ) = qϕ†ψ
and j(ψ, ϕ) = qcϕ†αkψ, and we note the continuity equa-
tion, ρ,t(ψ, ϕ) + divj(ψ, ϕ) = 0, for arbitrary free wave
solutions. We will assume the electromagnetic field in
Hem as time independent, so that we can use the fac-
torization ψnsε = unsεe

−iεωnt. Here, ε = ±1 stands for
positive/negative frequency solutions, and s is a (spin)
degeneration index, cf. after (2.7) and (2.12); the eigen-
frequencies ωn are positive or at least bounded from below.
In this way, we arrive at the time separated Dirac equa-
tion, �ωnunsε = εHemunsε. The energy spectrum labeled
by n may well be continuous; we will use box quantiza-
tion and perform the continuum limit when feasible. These
eigenfunctions, unsε, of the free Dirac Hamiltonian have
to be explicitly known, by means of a separate perturba-
tion theory. In a Coulomb potential, they are available in
closed form [27], but even then it is better to use a per-
turbative expansion in the electric fine structure constant
from scratch, cf. Appendix B, and to avoid the awkward
exact basis vectors. We will restrict to positive frequencies,
ε = 1, for notational convenience, and drop the index ε in
the wave functions and eigenvectors.

In the above current functionals, we separate off the
time dependence, defining ρ(ψmr, ψns) =: ρmr,nse−iωmnt

and j(ψmr, ψns) =: jmr,nse−iωmnt, where ωmn = ωm −
ωn. The time separated continuity equation thus reads
iωmnρmr,ns = divjmr,ns, so that the eigenfunctions
uns can be subjected to the normalization condition∫
ρmr,nsd

3x = qδmnδrs. We consider a free wave solu-
tion (in a time independent electromagnetic potential),
ψ =

∑
ns bnsunse

−iωnt, with arbitrary complex ampli-
tudes bns. The field energy is diagonal and can be ex-
panded as E0 =

∫
Hem
ψ d3x =

∑
ns �ωnb

∗
nsbns. In the cur-

rent functionals, we put ϕ = ψ and expand accordingly,

ρ =
∑
mr,ns

ρmr,nsb
∗
nsbmre

−iωmnt,

j =
∑
mr,ns

jmr,nsb∗nsbmre
−iωmnt, (3.2)



R. Tomaschitz: Quantum tachyons 245

where ρmr,ns = qu†nsumr and jmr,ns = qcu†nsα
kumr are

the time separated current matrices. These eigenmode
expansions are to be substituted into the interaction
Hamiltonian, Hint

ψ = −c−1(A0ρ+ Aj), together with the
Fourier series of the free tachyon field, cf. the beginning
of Section 2 and [28,29],

A(x, t) = L−3/2
∑
k

(
Â(k)ei(kx−ωt) + c.c.

)
,

Â(k) =
3∑

λ=1

εk,λâ(k, λ), (3.3)

with k = 2πn/L. The summation is over integer lattice
points n in R3, corresponding to periodic boundary condi-
tions. The εk,1 and εk,2 are arbitrary real unit vectors (lin-
ear polarization vectors) orthogonal to εk,3 := k0 = k/k,
so that the εk,λ constitute an orthonormal triad, and the
â(k, λ) are arbitrary complex numbers. The amplitudes Â
can arbitrarily be prescribed, the time component A0(x, t)
of the potential is then determined by the Lorentz con-
dition and the free field equations, and so is the tachy-
onic dispersion relation, k2 = ω2/c2 + m2

t . We split the
potential (3.3) into transversal/longitudinal components
AT,L(x, t), defined by the Fourier coefficients,

ÂT (k): =
∑
λ=1,2

εk,λâ(k, λ), ÂT0 = 0, (3.4)

ÂL(k): = k0â(k, 3), ÂL0 (k) = −c2kω−1â(k, 3). (3.5)

This decomposition is unique, as there is no gauge free-
dom. We have also indicated the Fourier coefficients of
the time component A0(x, t), defined like in (3.3); the
transversal time component vanishes, and ω(k) solves the
above dispersion relation. The energy densities of the
transversal and longitudinal wave fields read,

〈
ρTE

〉
= 2c−2

∑
k;λ=1,2

ω2â(k, λ)â∗(k, λ),

〈
ρLE

〉
= −2m2

t

∑
k

â(k, 3)â∗(k, 3), (3.6)

which are time averages obtained from classical Lagrange
formalism [29]. To set up the second quantization of these
densities, we introduce rescaled Fourier coefficients,

â(k, λ) = 2−1/2c�1/2ω−1/2ak,λ,

â(k, 3) = 2−1/2
�

1/2ω1/2m−1
t ak,3, (3.7)

λ = 1, 2, to arrive at the mode decomposition,
〈
ρTE

〉
=

∑
k;λ=1,2

�ωkak,λa
∗
k,λ,

〈
ρLE

〉
= −

∑
k

�ωkak,3a
∗
k,3,

(3.8)
which is taken as starting point for the occupation num-
ber representation. The Fourier coefficients ak,λ are in-
terpreted as operators, and the complex conjugates a∗k,λ

as their adjoints a+
k,λ. We use commutation relations for

the transversal degrees, λ = 1, 2, and anticommutators
for the longitudinal modes, to turn the longitudinal en-
ergy density into a positive definite operator. The ba-
sis vectors of the creation/annihilation operators a(+)

k,λ in
occupation number representation can be found in [29].
The time averaged transversal Hamilton operator of the
free tachyon field is thus 〈ρTE〉 in (3.8), with the Fourier
amplitudes ak,λa

∗
k,λ replaced by the operator products

a+
k,λak,λ. The longitudinal energy operator is defined by

the substitution ak,3a
∗
k,3 → −a+

k,3ak,3 in 〈ρLE〉. To sum
up, commutation relations, [ak,λ, a+

k′,λ′ ] = δkk′δλλ′ , hold
for the transversal superluminal modes, and anticommu-
tator brackets, [ak,3, a+

k′,3]+ = δkk′ , apply to the longitu-
dinal degree as well as to the subluminal spinorial modes,
[bmr, b+ns]+ = δmnδrs, cf. before (3.2). The tachyonic oper-
ators a(+)

k,λ commute with the particle operators b(+)
ns .

We turn to the interaction operator. In the 4-
current (3.2), we replace the amplitudes b∗nsbmr of the
Dirac field by the fermionic operator products b+nsbmr.
We consider positive frequencies only; antiparticles can
be dealt with analogously. The transversal and longitudi-
nal components, AT,L(x, t) and AL0 (x, t), of the tachyon
field, cf. (3.3–3.5), are turned into operators by replac-
ing the rescaled Fourier coefficients a(∗)

k,λ in (3.7) by the

bosonic/fermionic a
(+)
k,λ , as done in the energy densi-

ties (3.8). The interaction operator, HT
int + HL

int, is ob-
tained by substituting the tachyonic operator fields AT,L

and AL0 as well as the operator current (3.2) into the in-
teraction functional Hint

ψ , cf. after (3.2),

HT
int = −c−1AT j, HL

int = −c−1
(
AL0 ρ+ ALj

)
. (3.9)

First, we settle the transversal interaction
∫
HT
intd

3x,
keeping the linear polarization λ fixed (that is, no sum-
mation over λ in (3.4)). The transition matrix elements
for absorption and emission can readily be identified as,

〈
T Tabs/em

〉
= − �

1/2

√
2ω1/2

k L3/2

∫
εk,λ jmr,ns e±ikxd3x,

(3.10)
where jmr,ns are the matrix elements of the time sepa-
rated spinor current stated after (3.2). This corresponds to
the absorption or emission of a single transversal tachyon,
cf. [29,30] for details, where we studied interaction with
a non-relativistic scalar particle in a Coulomb potential.
The T -matrix for the interaction of tachyons with a Klein-
Gordon particle was derived in [28]. We will skip the
derivation of the transition rates here, as it is almost
identical to the derivation given in these references for
non-relativistic and spinless matter currents minimally
coupled to the Proca field. The tachyonic wave vector k
relates to the tachyonic frequency ωk by the dispersion re-
lation stated before (3.4). The matrices 〈T Tabs〉 and 〈T Tem〉
in (3.10) only differ by a sign change in the exponential;
the upper sign always refers to absorption. The initial elec-
tronic state is indicated by a subscript m and the final
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state by n, so that a positive ωmn := ωm − ωn stands for
emission. The initial and final spin indices are denoted by
r and s, respectively. The transition rate for transversally
induced absorption and emission in a given linear polar-
ization λ (where εk,λ can be chosen quite arbitrarily, cf.
after (3.3)) is obtained by a standard procedure [31],

dwT,indabs/em ∼ 1
8π2

k

�c2
1

eβ�ω − 1

×
∣∣∣∣
∫

εk,λ jmr,ns e±ikxd3x

∣∣∣∣
2

dΩ. (3.11)

The tachyonic frequency ω (as well as k(ω)) is taken
at |ωmn|, and the solid angle element, dΩ = sin θdθdϕ,
is centered at the tachyonic wave vector k. The emis-
sion rate also applies to spontaneous radiation, if the
(eβ�ωk − 1)−1-factor (averaged occupation number) is
dropped,

dwT,spem ∼ (eβ�ω − 1)dwT,indem =: ATmr,ns(k, λ)dΩ. (3.12)

The spontaneous transversal emission rate is tempera-
ture independent, unaffected by the tachyonic heat bath,
in contrast to the longitudinal emission discussed below.
More importantly, the spontaneous emission rate is time
symmetric, as manifested in the symmetry ATmr,ns(k, λ) =
ATns,mr(−k, λ) of the Einstein coefficients, so that (3.12)
also applies to the absorption of incident tachyons. The
rates for unpolarized transversal radiation are obtained
by replacing εk,λ jmr,ns in (3.11) by the transversal cur-
rent matrix, jTmr,ns = jmr,ns − k0(k0jmr,ns), cf. (3.3).

The longitudinal component of the interaction, HL
int

in (3.9), can be dealt with analogously. We split this
Hamiltonian into H

L(1)
int = −c−1ALj and H

L(2)
int =

−c−1AL0 ρ, so that the respective T -matrix components
read,

〈
T
L(1)
abs/em

〉
= − �

3/2ω
1/2
k√

2mtc2L3/2

∫
k0 jmr,nse±ikxd3x,

〈
T
L(2)
abs/em

〉
=

�
3/2k√

2mtω
1/2
k L3/2

∫
ρmr,nse

±ikxd3x. (3.13)

We have here restored the mass unit, mt → mtc/�, and
k0 = k/k is the tachyonic unit wave vector. Employing the
continuity equation as stated before (3.2), we can express
the longitudinal transition matrix , 〈TL(1)〉 + 〈TL(2)〉, by
the charge density only,

〈
TLabs/em

〉
=

mtc
2

√
2�1/2ω

1/2
k kL3/2

∫
ρmr,nse

±ikxd3x.

(3.14)
Here, we used energy conservation, ωk = ∓ωmn, as well as
the tachyonic dispersion relation, k2 = ω2

k/c
2 + (mtc/�)2.

The longitudinal transition rates read accordingly,

dwL,indabs/em ∼ 1
8π2

m2
t c

2

�3k

1
eβ�ω + 1

∣∣∣∣
∫
ρmr,nse

±ikxd3x

∣∣∣∣
2

dΩ.

(3.15)

The lower minus sign refers to emission. The subscript mr
denotes the initial electronic state, for absorption and
emission alike, and ω = |ωmn|. We write the total emission
rate as dwLem = dwL,spem,T=0−dwL,indem , with dwL,indem in (3.15)
and dwL,spem,T=0 := (eβ�ω + 1)dwL,indem , the latter being the
spontaneous transition rate in the zero temperature limit.
At finite temperature, the spontaneous emission rate is
identified as dwL,spem = dwL,spem,T=0 − 2dwL,indem , so that the
total emission, dwLem = dwL,indem + dwL,spem , is properly ac-
counted for. Hence,

dwL,spem ∼ tanh(β�ω/2)dwL,spem,T=0 =: ALmr,ns(k)dΩ.
(3.16)

The symmetry ALmr,ns(k) = ALns,mr(−k) of the A-
coefficients also extends to longitudinal radiation. The
longitudinal spontaneous emission is thus temperature de-
pendent and vanishes in the high-temperature limit.

We scrutinize in greater detail the tachyonic photoef-
fect, the ejection of a bound electron into the continuum
by an incoming tachyon. We start with the absorption
rates [31],

wT,Labs ∼ nk

t�2

∑
kn

∣∣∣〈T T,Labs

〉∣∣∣2
∣∣∣∣∣
∫ t/2

−t/2
e−i(ωmn+ωk)tdt

∣∣∣∣∣
2

∼ 2πnk

�2c2
L3

(2π)3

∫
dΩ

∫ ∞

mc2/�

∣∣∣〈T T,Labs

〉∣∣∣2

× δ(ωm − ωn + ωk)knωndωn, (3.17)

where we have replaced the summation over the electronic
wave vectors by the continuum limit, L3(2π)−3

∫
dkn, and

used the subluminal dispersion relation, k2
n = ω2

n/c
2 −

(mc/�)2, to obtain dkn = c−2knωndωndΩ. The angle in-
crement thus refers to the electronic wave vector in this
bound-free transition, in contrast to the transition rates
stated above, where dΩ = sin θdθdϕ is the solid angle ele-
ment of the tachyonic wave vector. The occupation num-
bers nk label the incident tachyon flux.

The absorption rates are readily assembled by means
of the transition matrices 〈T T,Labs 〉 in (3.10) and (3.14),

dwTabs ∼
nk

8π2

knωn
�c2ωk

∣∣JTmr,ns∣∣2 dΩ,

dwLabs ∼
nk

8π2

m2
t c

2knωn
�3k2ωk

∣∣JLmr,ns∣∣2 dΩ, (3.18)

where JTmr,ns and JLmr,ns denote the integrals in (3.10)
and (3.14), both with a plus sign in the exponent, cf. (B.8).
Energy conservation, ωn = ωm + ωk, is implied in (3.18).
We will focus on ground state ionization, so that ωm
stands for the electronic ground state energy, and we will
write p and ωp for the electronic wave vector and frequency
of the final state (the ejected free electron), instead of kn
and ωn. We parametrize the energy of the free electron
with the Lorentz factor, �ωp = mc2γ, so that we have
to add the rest mass to the non-relativistic ground state
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energy, �ωm ≈ mc2 − E0, where E0 = mc2α2
Z/2. Hence,

�ωp ≈ mc2−E0 +�ωk. The energy of the ionizing tachyon
can likewise be parametrized by its speed, �ωk = mtc

2γt,
where γt = (υ2

t /c
2 − 1)−1/2 is the tachyonic Lorentz fac-

tor, but it is more efficient to parametrize ωk with the
electronic Lorentz factor, making use of energy conserva-
tion. When calculating the matrix elements JT,Lmr,ns, in Ap-
pendix B, we will need the αZ -expansion of the electronic
scattering state [27], which requires �ωk 
 E0, cf. (B.7).
Therefore, we can drop the ionization energy E0 in the
energy conservation, so that �ωk ≈ mc2(γ − 1). (At the
ionization threshold, �ωk ≈ E0, we would have to use the
dipole approximation with exact but non-relativistic wave
functions. This limit is of special interest when applied
to Rydberg states [32,33]. At the ionization threshold of
highly excited states of order n ∼ 104, the longitudinal
cross-section starts to compete with photoionization [29],
in recombination even at lower levels.) The wave vectors
can be parametrized with γ via the dispersion relations
k2 = ω2

k +m2
t and p2 = ω2

p −m2. When restoring units, k
and p denote wave vectors, rather than momenta.

The current density of the incoming tachyons is
υgrnk/L

3, where υgr = c2k/ωk, so that the transversal
and longitudinal cross-sections relate to the respective ab-
sorption rates (3.18) as dσT,L = L3ωk(c2knk)−1dwT,Labs .
Hence,

dσT =
L3ωpp

8π2c4�k

〈
JT

〉2
dΩ, dσL =

L3m2
tωpp

8π2�3k3

〈
JL

〉2
dΩ.

(3.19)

Here, we replaced |JT,Lmr,ns|2 by 〈JT,L〉2 :=
(1/2)

∑
r,s=±1

|JT,Lmr,ns|2, averaging the cross-sections

over the initial spins and summing over the final ones.
The averaged matrix elements 〈JT,L〉2 are calculated
in Appendix B, in polar parametrization, cf. (B.30)
and (B.31). We use the asymptotic wave vector k of
the ionizing tachyon as polar axis, pk = pk cos θ. The
transversal linear polarization vector defining the az-
imuthal parametrization of the electronic momentum can
be arbitrarily chosen, εk,λp = p sin θ cosϕ. The results of
Appendix B are summarized in (3.20–3.25). We find the
transversal cross-section for relativistic ejection energies
as, cf. (B.32),

dσT =
16αqα5

Z�
2

ηδ2c2m2

√
γ2 − 1(γ + 1)

(γ − 1)4a4(θ)
ΣTdΩ, (3.20)

ΣT : =
1

4(γ−1)2
m4
t

m4
a(θ)+sin2 θ

[
1
4

(
(γ − 1)2+

m2
t

m2

)
a(θ)

−1
2
m2
t

m2
η2 + δ cos2 ϕ

(
2δ − 1

2
(γ − 1)a(θ)

)]
,

(3.21)

and the longitudinal differential cross-section reads,
cf. (B.33),

dσL =
4αqα5

Z�
2m2

t

ηδ2c2m4

√
γ2 − 1(γ + 1)

(γ − 1)6a4(θ)
ΣLdΩ, (3.22)

ΣL: = 4a(θ) + sin2 θ

[
2
m2
t

m2
− 8γ + (γ2 − 1)a(θ)

]
. (3.23)

In (3.20–3.23), we have introduced the shortcuts,

η2: = 1 +
1

(γ − 1)2
m2
t

m2
, δ: = 1 − 1

2(γ − 1)
m2
t

m2
, (3.24)

a(θ): = 2γχ
(

1 − υ

c

η

χ
cos θ

)
, χ: = 1 +

1
2γ(γ − 1)

m2
t

m2
.

(3.25)

The derivation of these cross-sections is given in Ap-
pendix B. The dimensionless fine structure constant, αq =
q2/(4π�c), is defined after (2.1), and αZ ≈ Z/137, cf.
after (B.2). The angular dependent factor a(θ) in (3.25)
enters in fourth power in the denominators of the cross-
sections. It cannot attain zero for any scattering angle,
since υη/(cχ) < 1 (where υ is the speed of the ejected
electron, υ/c = (γ2 − 1)1/2/γ). This inequality is satisfied
for all γ, apart from the double zero γ = 1 +m2

t/(2m
2),

which corresponds to υ/c ≈ mt/m. In the calculation of
the matrix elements in (3.19), we use an approximation of
the electronic scattering state which requires υ/c
 mt/m
and even the stronger condition that the ionization energy
is negligible compared to the kinetic energy of the ejected
electron, cf. the remarks on energy conservation follow-
ing (3.18) and the Born approximation discussed below,
after (3.31). Thus the factor a(θ) does not give rise to a
singularity or a diverging total cross-section.

The total cross-sections are obtained by performing
the solid angle integration in (3.20) and (3.22), which can
be reduced to the integrals listed in (B.34) and (B.35). We
find the total transversal section as,

σT =
παqα

5
Z�

2υ

3η3δ6c3m2

γ

(γ − 1)4
ST ,

ST : = 2(3γ2 − 2γ + 4) − 3
(
γ − 2 +

3
2
m2
t

m2

1
γ − 1

)

× δ4c

ηυγ
log

1 + ηυ/(χc)
1 − ηυ/(χc)

− 2
m2
t

m2

5γ3 − 13γ2 + 9γ − 9
(γ − 1)2

+
1
2
m4
t

m4

15γ3 − 45γ2 + 23γ − 25
(γ − 1)3

+
m6
t

m6

12γ2 − 5γ + 1
(γ − 1)4

+
3
8
m8
t

m8

11γ + 5
(γ − 1)5

. (3.26)

The electromagnetic cross-section σph is recovered
from σT , if we put mt = 0 (which implies η = δ = χ = 1),
and replace αq with the electric fine structure constant,
αe ≈ 1/137, cf. [27]. The total longitudinal cross-section
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reads,

σL =
2παqα5

Z�
2m2

tυ
3

3η3δ6c5m4

γ3

(γ − 1)7
SL,

SL: = 7γ − 3
2
δ4c

ηυγ
log

1 + ηυ/(χc)
1 − ηυ/(χc)

− 1
2
m2
t

m2

2γ2 − 21γ + 11
(γ − 1)2

+
1
4
m4
t

m4

3γ2 − γ + 22
(γ − 1)3

+
3
8
m6
t

m6

1
(γ − 1)3

. (3.27)

The recombination cross-sections are obtained by balanc-
ing emission and absorption rates, σTrec = 2(k/p)2σT and
σLrec = (k/p)2σL, reflecting the symmetry of the Einstein
coefficients. The factor of two is the weight of the transver-
sal degrees. These cross-sections refer to electron capture
in the empty K-shell, irrespectively of the spin. (The ion-
ization cross-sections σT,L assume a single electron in the
K-shell.) As pointed out after (3.18), the ratio of the
tachyonic and electronic wave vectors can be parametrized
with the electronic Lorentz factor,

k2

p2
≈ γ − 1
γ + 1

+
m2
t

m2

1
γ2 − 1

, (3.28)

where we have neglected the ionization energy. In strong
contrast to the ionization threshold, the factor k/p can-
not get large in the high-energy regime and augment the
likelihood of recombination by tachyon emission.

We study limit cases of the above cross-sections. In
the ultra-relativistic limit, γ 
 1, we can approximate
ST ∼ 6γ2 and SL ∼ 7γ in (3.26) and (3.27), so that the
total cross-sections simplify to

σT ∼ 2παqα5
Z�

2

c2m2γ
, σL ∼ 14παqα5

Z�
2m2

t

3c2m4γ3
,
σL

σT
∼ 7

3
m2
t

m2

1
γ2
,

(3.29)
which are the leading orders in an 1/γ-expansion. We note
mt/m ≈ 1/238, and σT /σph ∼ αq/αe ≈ 1.4 × 10−11. The
ratio σL/σT also shows in the quotients of the differential
sections, so that the transversal radiation largely overpow-
ers the longitudinal emission in this limit. The angular
extrema of the differential sections (3.20) and (3.22), that
is, of dσT,L/dθdϕ, solve

a(θ)d
(
sin θΣT,L

)
/dθ = 4a′(θ) sin θΣT,L. (3.30)

In the ultra-relativistic limit, we use the ansatz cos θ =
1−x2/(2γ2)+..., so that a(θ) ∼ (1+x2)/γ and a′(θ) ∼ 2x,
in leading order in 1/γ. The transversal maximum is just
x ≈ 1, corresponding to a scattering angle of θ ≈ 1/γ.
The longitudinal peak is found as the positive zero of
3x6 − 20x4 + 37x2 − 4 = 0, namely x ≈ 0.3393, so that
θ ≈ 0.34/γ. The differential cross-sections greatly simplify
for scattering angles of order 1/γ, as we may approximate
sin θ ∼ θ and a(θ) ∼ (1+γ2θ2)/γ in (3.20–3.23). Hence, in
the case of ultra-relativistic ejection energies and for scat-
tering angles close to the maxima, the differential cross-

sections simplify to,

dσT ∼ 4αqα5
Z�

2

c2m2

γ3θ3dθdϕ

(1 + γ2θ2)3
,

dσL ∼ 4αqα5
Z�

2m2
t

c2m4

(4 − 3γ2θ2 + γ4θ4)θdθdϕ
γ(1 + γ2θ2)4

, (3.31)

which is the leading order of the 1/γ-expansion, exhibiting
marked peaks.

We turn to the non-relativistic limit of the total cross-
sections (3.26) and (3.27), in Born approximation, and
put γ ≈ 1 + υ2/(2c2), but still assuming υ/c 
 mt/m.
Even υ/c 
 αZ is required by the Born approximation
in a Coulomb potential, tantamount to ejection energies
much higher than the ionization threshold, cf. the remarks
following (3.18) and (3.25). This suggests to expand ST,L
in the small ratio mtc/mυ (as well as in υ/c). We put δ ≈
χ ≈ 1, valid up to terms of O((mtc/mυ)2). To the same
accuracy, η2 ≈ 1 + 4m2

t c
4/(m2υ4). The ratio mtc

2/mυ2

need not be small, but ηυ/c � 1 holds safely. In this
way, we find ST ∼ 4SL ∼ 16η2; the first three terms
in (3.26) and (3.27) contribute to that. Finally, we write
η ≈ 2ε/(mυ2), where ε2 := (mυ2/2)2 + m2

t c
4, to recover

the non-relativistic Born approximation [29,30],

σT ∼ 27π

3
αqα

5
Z�

2c5

εmυ5
, σL ∼ 29π

3
αqα

5
Z�

2m2
t c

9

εm3υ9
. (3.32)

The recombination cross-sections relate to (3.32) as stated
after (3.27); the non-relativistic limit of (3.28) reads k/p ≈
ε/(mυc).

The non-relativistic limit of the differential sec-
tions (3.20–3.23) is easily found, by making use of the
expansions outlined after (3.31),

dσT

dθdϕ
=

25αqα
5
Z�

2c5

εmυ5
sin3 θ cos2 ϕ

×
(

1 +
8ε
mυc

cos θ + O
(
υ2

c2
,
m2
t c

2

m2υ2

))
, (3.33)

dσL

dθdϕ
=

27αqα
5
Z�

2m2
t c

9

εm3υ9
sin θ

×
[
cos2 θ

(
1 +

8ε
mυc

cos θ
)
− 2ε
mυc

cos θ + O
]
.

(3.34)

The Born approximation is only valid for υ/c 
 mt/m.
Therefore, we have included the ε-terms, that is, the first
order correction in υ/c and mtc/(mυ). When perform-
ing the angular integration, the ε-terms drop out, and
we recover the total cross-sections (3.32). However, the
ε-terms shift the angular extrema. The transversal sec-
tion is peaked at θTmax, very close to the minimum of the
longitudinal section at θLmin, and this minimum separates
two longitudinal peaks located at θLmax1,2, where

θTmax ≈ π

2
− 8

3
ε

mυc
, θLmin ≈ π

2
− ε

mυc
,

θLmax1,2 ≈ θ1,2 − 11
6
√

3
ε

mυc
. (3.35)
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The angles θ1,2 defining the longitudinal maxima are the
roots of sin θ = 1/

√
3, that is, θ1 ≈ 0.6155 and θ2 = π−θ1.

Thus the peaks of the longitudinal section (3.34) occur at
scattering angles of 35.3◦ and 144.7◦ (without ε-shift) and
have the same height. The ε-correction augments the peak
of dσL at θLmax1 and attenuates the second peak at θLmax2.
The height of the transversal peak and the longitudinal
minimum are not affected by the ε-shift, in linear order at
least. The total non-relativistic cross-sections (3.32) can,
of course, be derived from non-relativistic scattering the-
ory (Schrödinger equation in a Coulomb potential, min-
imally coupled to the Proca field [30]), we do not even
have to take spin into account in the non-relativistic limit.
The differential cross-sections (3.33) and (3.34) can also
be recovered in this way, but without ε-correction. In [30],
we actually guessed the relativistic first-order correction
of the transversal section, relying on the electromagnetic
counterpart, but we didn’t attempt to find the longitu-
dinal correction terms. The angular maxima cited in [30]
differ from those in (3.35), as we there calculated the ex-
trema of dσT,L/dΩ instead of dσT,L/dθdϕ. In any case,
there is a clear separation of the transversal and longi-
tudinal peaks, which can be used to distinct tachyons of
different polarization, and to disentangle longitudinal and
transversal radiation. In the ultra-relativistic limit, the
transversal and the longitudinal section are both peaked
at small scattering angles, but they cannot coalesce since
θLmax/θ

T
max ∼ 0.34, and the peaks become much more pro-

nounced than in the non-relativistic limit.

4 Conclusion

The quantization of superluminal field theories has con-
stantly been marred by the fact that there is no rela-
tivistically invariant way to distinct positive and negative
frequency solutions outside the lightcone, a consequence
of time inversions by Lorentz boosts. When attempting
quantization, the result was either unitarity violation or
non-invariant vacua [12–16]. Therefore, relativistic inter-
actions of superluminal quanta with matter have never
been worked out to an extend that they could be sub-
jected to test. In fact, tachyons have not been detected
so far, and one may ask why. There is the possibility
that superluminal signals just don’t exist, the vacuum
speed of light being the definitive upper bound. In an
open universe, however, this is not a particularly appeal-
ing perspective. There is another explanation, which we
worked out quite quantitatively in this paper. The inter-
action of superluminal radiation with matter is very small,
the quotient of tachyonic and electric fine structure con-
stants being αq/αe ≈ 1.4 × 10−11, and therefore super-
luminal quanta are just hard to detect. There have been
searches for tachyons, which were assumed to be electri-
cally charged, emitting Cherenkov radiation in vacuum,
and bubble-chamber events were reanalyzed in search of
negative mass-squares of neutral tachyons inferred from
energy-momentum conservation [5,6,9–11]. Apart from
that, tachyonic quanta should have been detected over

the years, accidentally, despite of their tiny interaction
with matter. The most likely reason as to why this has
not happened is this: due to our contemporary relativis-
tic spacetime conception, we are obliged to systematically
ignore them.

In strong contrast to (sub-)luminal wave propagation,
there is no retarded propagator supported outside the
lightcone, only a time symmetric Green function gener-
ating half-retarded half-advanced wave fields. To achieve
fully retarded wave propagation, an absorber is needed
that turns the advanced component into the missing half
of the retarded field [34,35]. The absorber field, a local
manifestation of the absolute cosmic spacetime, affects the
energy balance, the mentioned search for missing negative
mass-squares [6] fails since the energy radiated is drained
from the absorber [24,28]. There is no vacuum Cherenkov
radiation either [3,5], as the radiating sources are
subluminal.

In Section 3, we have quantized the free superlumi-
nal radiation field and the interaction Hamiltonian. There
are three major deviations from the standard quantiza-
tion procedure of subluminal field theories. Two of them
are technical, the third involves the absolute cosmic time
order. First, it is the time averaged energy density, rather
than the classical Hamiltonian, that is taken as starting
point for the operator interpretation. Second, Fermi statis-
tics is employed for the longitudinal modes of an integer
spin field, and third, the vacuum state is defined with re-
spect to the cosmic reference frame [24]. As mentioned
in the Introduction, Fermi statistics for integer spin fields
was already employed by Feinberg [4]. However, he had
to restrict his theory to a scalar field, as there is no rela-
tivistically invariant unitary representation of higher spin
with negative mass-square. Lorentz boosts mix not only
positive and negative frequency solutions but also the lon-
gitudinal and transversal components of vector fields [30].
In the absolute cosmic spacetime, we are not hampered by
the lack of unitary vector representations of the Lorentz
group with negative mass-square, since the S-matrix is
safely unitary in the rest frames of comoving observers,
as exemplified in Section 3, where we calculated the tran-
sition matrix for tachyonic bound-bound and bound-free
transitions in a Coulomb potential. The absolute cosmic
time order provides a way to unambiguously identify ad-
vanced and retarded wave fields, positive and negative fre-
quency solutions, particles and antiparticles, and to define
a stable vacuum state and a positive definite energy oper-
ator, all this is key to quantization [29].

Differential cross-sections are perhaps the most prac-
tical means to disentangle transversal and longitudinal
radiation, as demonstrated here with ionization. The po-
larization of the ionizing radiation affects the angular
maxima, the peaks in the transversal and longitudinal
cross-sections occur at different scattering angles. One
may expect that tachyonic Compton scattering can also
be used to discern longitudinal quanta from transversal
tachyons and photons. There should be a transversal and
longitudinal tachyonic counterpart to the Klein-Nishina
formula, pertinent to the acceleration of the electron by
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the incoming tachyonic wave field triggering electromag-
netic radiation. The tachyonic Thomson cross-section, the
non-relativistic classical limit, was already derived in [24],
but a quantum mechanical version is still lacking, es-
pecially if the energies of the incident tachyonic X-rays
are close to the tachyon mass. Another interesting cross-
section to be scrutinized in search of longitudinal radiation
is the conversion of tachyonic γ-rays [36] into electron-
positron pairs. Pair production by tachyons has not been
studied in any limit and context as yet, for instance, in a
Coulomb potential or strong magnetic field. In the ultra-
relativistic limit, the cross-section for the conversion of
transversal tachyonic γ-rays is presumably just the Bethe-
Heitler formula rescaled by the ratio αq/αe of the fine
structure constants. Other mechanisms for the detection
of longitudinal radiation modes have been suggested, per-
taining to a finite photon mass (positive mass-square),
such as a capacitor in a perfectly conducting shell, impen-
etrable for transversal waves [19]. This line of reasoning,
focused on macroscopic current distributions, is unlikely
to be applicable to tachyons. At least, there is no obvious
tachyonic counterpart to a perfectly conducting shell or
the skin depth of a conductor, or even to a macroscopic
charge density, due to averaging effects caused by periodic
sign changes of the tachyon potential [20].
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dasan University, Trichy, and the Institute of Mathematical
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Appendix A: Interaction of tachyons with slow
electrons: matrix elements in the low-energy
limit

We use the notation of Section 2. In the non-relativistic
limit, the Dirac equation can be replaced by the Pauli
equation,

1
i
∇A

0 ψ =
�

2m
(∇A

k∇Ak + σiε
ikl

(
ẽAeml,k + q̃Al,k

))
ψ,

(A.1)
where ψ is a 2-spinor field. The derivatives ∇A

µ are defined
in (2.1), and the σi are the usual Pauli matrices,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.2)

The indices of σk are lowered with δik, and we will oc-
casionally write σ for this 3-vector. We note σmσn =
iεmnkσk + δmn as well as εkijσiσj = 2iσk, where εijk

is the totally antisymmetric Levi-Civita symbol, so that
εijkεmnk = δimδ

j
n − δinδ

j
m. A possible Lagrangian for the

wave equation (A.1) is L = Lt + Ls, where

Lt =
i�

2
(
ψ†∇A

0 ψ − (∇A∗
0 ψ†)ψ)

,

Ls = − �
2

2m
((∇A∗

i ψ†σi
)
σk∇A

k ψ
)
. (A.3)

Here, ψ† indicates transposition and complex conjugation
of the 2-spinor. This Lagrangian is to be identified with
Lint when added to the Proca Lagrangian LP , cf. the be-
ginning of Section 2. We may replace the component con-
taining the spatial derivatives by

Ls = − �
2

2m
(
(∇Ak∗ψ†)∇A

k ψ

−εikl(ẽAemi + q̃Ai)∂k(ψ†σlψ)
)
, (A.4)

which coincides with Ls in (A.3) up to a divergence. Here,
A

(em)
i ∂k can be replaced by A

(em)
k,i , again up to a diver-

gence, so that the Pauli equation (A.1) easily follows, but
the current should be derived from (A.3) or (A.4), via
jµ = c∂L/∂Aµ, to reproduce the Dirac current in the
non-relativistic limit, cf. after (A.6). In so doing, we find
the charge density, ρ = j0 = qψ†ψ, and the 3-current,

ji =
i�q

2m
((∇Ai∗ψ†)ψ − ψ†∇Aiψ

)
+

�q

2m
εikl∂k

(
ψ†σlψ

)
.

(A.5)
The signs have been chosen in a way that jµ can be iden-
tified with the current in the Proca equation as stated at
the beginning of Section 2.

The non-relativistic Hamiltonian is identified by writ-
ing the Pauli equation (A.1) as i�ψ,t = Hψ,

−H =
�

2

2m
∇A
k∇Ak +

1
mc

S · (eBem + qB) +
e

c
Aem0 +

q

c
A0,

(A.6)
where B(em) = rotA(em), and S = (�/2)σ is the spin
operator. This Hamiltonian can also be derived from the
Dirac equation by means of the substitution (ϕ, χ)t =
e−i(mc

2/�)t(ϕ̃, χ̃)t in (2.3). The second component of (2.3)
gives 2imcχ̃ = �σk∇A

k ϕ̃+ O(1/c), to be inserted into the
first. Performing the limit c → ∞, and writing ψ for the
2-spinor ϕ̃, we find,

1
i
∇A

0 ψ − �

2m
σi∇A

i σ
k∇A

k ψ = 0. (A.7)

This is equivalent to the Pauli equation (A.1), by virtue of
the first of the identities mentioned after (A.2). Moreover,
if we use the above substitution in the Dirac current (2.4),
we recover the non-relativistic current (A.5).

As for the current matrix, it is better to refrain from
the Gordon decomposition (A.5), and to directly derive
it from the Lagrangian defined in (A.3), or from the
Dirac current matrices (2.11) via the indicated substitu-
tion. In (A.3), we replace the left conjugated spinor by
ψ†
n and the right one by ψm, to find the charge density
ρmn = qψ†

nψm and the 3-current matrix,

jkmn =
i�q

2m
((σi∇A

i ψn)†σkψm − ψ†
nσ

kσi∇A
i ψm). (A.8)

As we systematically linearize in q, the tachyonic charge,
we may replace here ∇A

i by ∂i or ∇em
i , cf. after (2.1).

We turn to the helicity operator, the spin operator pro-
jected onto the wave vector. In the non-relativistic case,
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this operator is just σk/k, apart from a factor of one-half,
cf. (A.6). The relativistic helicity operator, kΣ/k, likewise
reduces to ±σk/k, the signs applying to positive/negative
frequency subspaces, respectively, cf. after (2.7). It re-
mains to solve (σk−ks)ϕ′

k,s = 0, where s takes the values
±1 for the determinant to vanish. A complete set of eigen-
vectors is easily found,

ϕ′
k,s =

1√
2k(k + sk3)

(
k + sk3

s(k1 + ik2)

)

=
1√

2(1 + s cos θk)

(
1 + s cos θk
s sin θkeiχk

)
. (A.9)

(Here, k = |k|, and ki denotes the respective component
of k.) We have chosen the normalization ϕ′†

k,sϕ
′
k,s = 1 and

a convenient but arbitrary phase. If k is a coordinate vec-
tor ei, then the normalized solution is ϕ′

e1,s = 2−1/2(1, s)t

or ϕ′
e2,s = 2−1/2(1, is)t or ϕ′

e3,s = (1/2)(1 + s, 1− s)t, re-
spectively, again up to an arbitrary phase factor. In (A.9),
we have introduced polar coordinates with polar axis k,

k1 + ik2 = k sin θkeiχk , k3 = k cos θk,
k ± sk3 = k(1 ± s cos θk). (A.10)

This is a very efficient parametrization, by virtue of
sin2 θk = (1+s cos θk)(1−s cos θk), when calculating prod-
ucts of matrix elements, e.g.,

2(ϕ′†
q,rσpϕ′

k,s)(ϕ
′†
k,sσbϕ′

q,r) = i(p × b)(rq0 − sk0)

+ pb + rs((pk0)(bq0) + (pq0)(bk0) − (pb)(k0q0)).
(A.11)

The subscript zeros denote unit vectors; the respective
(unnormalized) wave vectors q and k, indicated in the
spinor subscripts, define the spinors according to (A.9).
(These spinors depend only on the unit vectors, of course.)
The spin indices r and s both admit the values ±1. The
arbitrary phase factors of the spinors (A.9) cancel each
other. This formula can readily be derived for arbitrary
real projection vectors p and b, by means of the above
angular parametrization, and it evidently stays valid for
complex vectors as well. Other products of matrix ele-
ments such as

2(ϕ′†
q,rσpϕ′

k,s)(ϕ
′†
k,sϕ

′
q,r) = p(sk0 + rq0)

+ irsp(k0 × q0),

2(ϕ′†
q,rϕ

′
k,s)(ϕ

′†
k,sσbϕ′

q,r) = b(sk0 + rq0)

− irsb(k0 × q0), (A.12)

2
∣∣∣ϕ′†

k,sϕ
′
q,r

∣∣∣2 = 1 + rsk0q0,

2
∣∣∣ϕ′†

k,sσϕ
′
q,r

∣∣∣2 = 3 − rsk0q0, (A.13)

are obtained from (A.11), by identifying (the current pro-
jection vectors) b or p with the spin projection vectors q
or k, respectively, and by applying the eigenvalue equa-
tions defining the spinors, such as (σq − qr)ϕ′

q,r = 0.

The squared matrix elements of the Dirac current can be
reduced to those in (A.13), cf. (2.13–2.15), and we also
mention ϕ′†

k,sϕ
′
k,r = δsr and ϕ′†

k,sσ
iϕ′

k,s = ski/k.
Products of type (ϕ′†

q,r(P + σp)ϕ′
k,s)(ϕ′†

k,s(B +
σb)ϕ′

q,r), where B and P are arbitrary complex num-
bers, can be assembled from (A.11–A.13). The special case
P = B∗ and p = b∗ reads,

2
∣∣∣ϕ′†

k,s(B + σb)ϕ′
q,r

∣∣∣2 = |B|2 (1 + rsk0q0)

+ bb∗(1 − rsk0q0) + rs((b∗k0)(bq0) + (b∗q0)(bk0)
+ i(Bb∗ −B∗b)(k0 × q0)) + (Bb∗ +B∗b)(sk0 + rq0)

+ i(b× b∗)(sk0 − rq0), (A.14)

and we note the symmetry,
∣∣∣ϕ′†

k,s(B + σb)ϕ′
q,r

∣∣∣2 =
∣∣∣ϕ′†

q,r(B
∗ + σb∗)ϕ′

k,s

∣∣∣2 . (A.15)

Multiple products of Pauli matrices in squared matrix el-
ements can be reduced to (A.14) by applying (σa)(σb) =
ab + iσ(a × b). In (A.14), we split B = F1 + iF2 and
b = G1 + iG2, to find,

∣∣∣ϕ′†
k,s (F1 + iF2 + σ (G1 + iG2))ϕ′

q,r

∣∣∣2

= 1
2

(
F 2

1 + F 2
2

)
(1 + rsk0q0) + 1

2

(
|G1|2 + |G2|2

)
× (1 − rsk0q0) + rs ((G1k0) (G1q0) + (G2k0) (G2q0)

+ (F1G2 − F2G1) (k0 × q0)) + (F1G1 + F2G2)
× (sk0 + rq0) + (G1 × G2) (sk0 − rq0) . (A.16)

In the product formulas (A.11–A.16), it is understood that
k0 and q0 are real unit vectors, defining the 2-spinors
in the matrix elements by virtue of (A.9). Matrix ele-
ments over 4-spinors can be decomposed into 2-spinor el-
ements of type (A.16), as done in Appendix B, cf. (B.14)
and (B.15). In this way, we can save the formalism needed
in manifestly covariant spin averaging procedures, such as
the introduction of spin and energy projection operators
and trace calculations of products of Dirac matrices.

Finally, we return to the non-relativistic spinor cur-
rent (A.8), and substitute the eigenfunctions, ψn =
L−3/2ϕ′

kn,sn
ei(knx−ωnt), of the free Pauli equation and

the helicity operator. Here, we use the non-relativistic dis-
persion relation, ωn = �k2

n/(2m), and the spinors ϕ′
kn,sn

in (A.9). The normalization is such that
∫
L3 ρmnd

3x =
qδmn, where ρmn is the charge density matrix defined
before (A.8). By employing the eigenvalue equation for
ϕ′
kn,sn

as stated before (A.9), we find the time separated
current matrix,

ρ̃mn =
q

L3
ϕ′†
nϕ

′
me

ikmnx,

j̃mn =
q�

2mL3
(kmsm + knsn)ϕ′†

nσϕ
′
me

ikmnx. (A.17)

(The time factorization is defined as in (2.13).) We square
these matrix elements by means of (A.13), to recover the
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non-relativistic limit of the spin summation in (2.15),

∑
sn=±1

|ρ̃mn|2 =
q2

L6
,

∑
sn=±1

∣∣∣̃jmn
∣∣∣2 =

q2

L6

(
3
4

(
υ2
m + υ2

n

) − 1
2
υmυn

)
, (A.18)

where υm = �km/m.

Appendix B: Tachyonic ionization
cross-sections: matrix elements
in the high-energy regime

In (B.1–B.7), we outline the calculation of the Fourier
transformed electronic ground state and the scattering
state, including the first order corrections in the electric
fine structure constant [27]. This is not new, of course, but
we need it in tune with the notation and conventions of
Section 2 when calculating the current matrix elements,
cf. (B.8–B.21). Subsequently, we will explain the angu-
lar parametrization of the cross-sections and work out
their dependence on the electronic Lorentz factor and the
electron-tachyon mass ratio.

First, we settle the bound state. We start with the
Dirac Hamiltonian in a Coulomb potential, that is, with
Hem in (2.7) (� = c = 1), and factorize the wave func-
tion, ψ = une

−iεωt, to arrive at the time separated Dirac
equation,

(
εω + iαk∂k −mβ + eAem0

)
un = 0. (B.1)

Applying (εω − iαk∂k +mβ + eAem0 ), we find,
(
∆+ ω2 −m2 + 2εωeAem0 − ieαkAem0,k + e2Aem2

0

)
un = 0.

(B.2)
We identify eAem0 = −V , where V = −Ze2/(4πr), cf. af-
ter (2.1), and drop terms of order e2, that is, the squared
potential in (B.2). Finally, we consider positive frequen-
cies, ε = 1, cf. after (2.7), write ω = m−En, and introduce
αZ = Ze2/(4π) ≈ Z/137, to arrive at

(
1

2m
∆− En +

αZ
r

− i
αZ
2m

αk
(
∂k

1
r

))
un = 0. (B.3)

In lowest order in αZ , we can readily guess the solu-
tions, un ≈ (1 + iαZαr0/2)u′0ψCn , where ψCn is a bound
state wave function (normalized to one) of the Schrödinger
equation, obtained by dropping the gradient term in (B.3),
the relativistic correction, that is. The En > 0 are
the corresponding Coulomb bound state energies, and r0

is the unit coordinate vector. The constant rest frame
spinor u′0 = (ϕ′

b,r, 0)t, cf. after (2.7), is likewise normal-
ized to unity, u′†0u

′
0 = 1; the 2-spinor ϕ′

b,r is defined
in (A.9), where b is an arbitrary (real, unnormalized)
spin projection vector, and r = ±1 is the spin index.
It is easy to check that these un are solutions of (B.3),
since ψCn,k/ψ

C
n is of O(αZ) for Coulomb bound states.

We will focus on the ground state, E0 = mα2
Z/2, with

the normalized eigenfunction ψC0 = (πa3
B)−1/2e−r/aB ,

where aB = 1/(mαZ). To facilitate the subsequent par-
tial integrations, we write the ground state of (B.3) as
u0,r ≈ (1 − (i/(2m))αk∂k)u′0,rψC0 , where we have explic-
itly indicated the spin index r of the 2-spinor ϕ′

b,r in u′0.
We will need this wave function in momentum space; the
Fourier transform of u0,r reads,

û0,r (q) ≈
(
1 +

αq
2m

)
u′0,rψ̂C0 (q) ,

ψ̂C0 (q) =
8π
aB

(
πa3

B

)−1/2

(
q2 + a−2

B

)2 . (B.4)

(The convention for Fourier transforms is ϕ(x) =
(2π)−3

∫
ϕ̂(q)eiεqxd3q, and we will restrict to posi-

tive frequencies, ε = 1.) In deriving (B.4), we used∫
e−µr−iqxd3x = 8πµ(q2 + µ2)−2, which is a limit defi-

nition, (2π)3δ(q, µ → 0), of the Dirac function. This sug-
gests to approximate, ψ̂C0 (q) ≈ (2π)3δ(q)(πa3

B)−1/2, if
permissible, cf. (B.10).

We turn to the electronic scattering state. After time
separation, ψ = ufe

−iεωt, we use the ansatz uf =
u′feiεpx + uCf (x) in (B.1), where u′f (p) = (ϕp,s, χp,s)t is
a constant spinor defined in (2.9) or (2.10). The spinor
uf is supposed to solve the field equation (B.1) with
eAem0 = αZe

−µr/r; here, an exponential has been inserted
to regularize the Fourier transform of uf , the limit µ→ 0
will be carried out when appropriate, cf. (B.7). The con-
stant spinor u′f (p) satisfies (εω− εαp−mβ)u′f = 0, with
p2 = ω2−m2, cf. after (2.12). The Coulomb correction uCf
in the above ansatz is thus obtained by solving, cf. (B.1)
and (B.2),

(
εω + iαk∂k −mβ

)
uCf = −αZr−1e−µr+iεpxu′f ,

(
∆+ ω2 −m2

)
uCf = −αZ(εω − iαk∂k +mβ)

× (r−1e−µr+iεpx)u′f . (B.5)

We again restrict to ε = 1. The second order equation
is most easily dealt with in Fourier space. We multiply
with e−iqx, and integrate over 3-space. By making use of∫
r−1e−µr−ipxd3x = 4π(p2 + µ2)−1, we find,

(ω2 −m2 − q2)ûCf (q) = −4παZ
ω +mβ + αq
(p − q)2 + µ2

u′f (p),

(B.6)
where ûCf (q) =

∫
uCf (x)e−iqxd3x. We can thus assem-

ble the Fourier transform of the final electronic state uf,s
(with the spin index s now explicitly indicated),

ûf,s(q) = (2π)3δ(p − q)u′f,s(p) + ûCf,s(q),

ûCf,s(q) ≈ −4παZ
2ω − α(p− q)

(p2 − q2)(p − q)2
u′f,s(p). (B.7)

The spin is projected onto the (asymptotic) wave vec-
tor p, so that u′f,s(p) = (ϕp,s, χp,s)t, as defined by (2.9)
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and (A.9). We have finally put µ = 0, as no regularization
is required in the following integrations.

Some comments on box quantization and the nor-
malization convention for scattering states are in or-
der. Continuum solutions of the Dirac equation (free or
in a Coulomb potential) are normalized according to∫
R3 u

†
p,ruk,sd

3x = (2π)3δ(k − p)δrs, which means that
asymptotically up,s ∼ u′p,seiεpx, where u′p,s is a con-
stant spinor (2.9) or (2.10). In box quantization, we have
to switch from lattice summations over p = 2πn/L to
the continuum limit, L3(2π)−3d3p, and vice versa. The
free modes of the continuous spectrum (normalized as in-
dicated) are discretized by replacing p → 2πn/L, and
adding a factor of L−3/2 according to (2.12). The same ap-
plies to the perturbed (Coulomb) wave fields. As for bound
states, we always normalize them by

∫
R3 u

†
i,ruj,sd

3x =
δijδrs, even when invoking box quantization, as they are
already discrete. That is, we perform the continuum limit
when normalizing, even though we keep the box size finite
otherwise.

We turn to the actual calculation of the matrix ele-
ments. In the ionization cross-sections (3.19), the squared
elements

∣∣JT,Lmr,ns

∣∣2 enter, where

JTmr,ns :=
∫

εk,λjmr,nseikxd3x,

JLmr,ns :=
∫
ρmr,nse

ikxd3x. (B.8)

The εk,λ are real (linear) polarization unit vectors of the
tachyon field as defined after (3.3). The current matri-
ces ρmr,ns = qu†nsumr and jmr,ns = qu†nsαumr were in-
troduced after (3.2) (� = c = 1), and the matrix vec-
tor α is defined in (2.6), in standard representation. We
identify umr with the initial electronic bound state u0,r

in (B.4), and uns with the scattering state uf,s in (B.7).
This identification is arbitrary and can be interchanged in
the squared matrix elements. We rewrite the transversal
current (B.8) in Fourier transforms,

JTr,s =
q

(2π)3

∫
û†f,s(q)αεk,λû0,r(q − k)d3q, (B.9)

and substitute the initial and final states (B.4) and (B.7).
The indices r and s in JTr,s stand for the initial and final
spin states, respectively. The d3q-integration gets trivial
by virtue of δ-functions,

JTr,s ≈ qu′†f,s (p)αεk,λ

(
1 +

α (p− k)
2m

)
u′0,rψ̂C0 (p− k)

+
q√
πa3

B

ûC†
f,s (k) αεk,λu

′
0,r. (B.10)

The longitudinal current JLr,s is likewise given by (B.10),
but with the matrix αεk,λ dropped in both terms. Insert-
ing here the explicit formulas for ψ̂C0 and ûCf,s as stated
in (B.4) and (B.7), we find,

JT,Lr,s ≈ 8πq
(πa3

B)1/2aB

u′†f,s(p)jT,Lu′0,r
(p − k)2

, (B.11)

where aB := 1/(mαZ), and the jT,L are assembled as,

jT := Aαεk,λ + (αεk,λ)(αB) + (αC)(αεk,λ),

jL := A+ α(B + C), (B.12)

A :=
1

(p− k)2
− ω

m

1
p2 − k2

, B :=
p− k

2m(p− k)2
,

C :=
p − k

2m(p2 − k2)
. (B.13)

Here, p and k are the asymptotic wave vectors of the
ejected electron and the incident ionizing tachyon, respec-
tively. The dispersion relations read p2 = ω2

p − m2 and
k2 = ω2

k + m2
t , cf. after (3.14). From now on, we write

the electronic and tachyonic frequencies with p and k sub-
scripts; ω in (B.13) and in all other formulas above is thus
the electronic ωp. The rest frame spinor u′0,r = (ϕ′

b,r, 0)t

in (B.11) is defined with a 2-spinor (A.9), where the
spin projection vector b is arbitrary, cf. after (B.3). The
asymptotic amplitude u′f,s(p) of the outgoing wave, cf.
before (B.5), is composed of two 2-spinors, (ϕp,s, χp,s)t,
defined by (2.9) and (A.9), with spin projection onto the
electronic wave vector p.

The transversal matrix element in (B.11) can be re-
duced to a 2-spinor element,

u′†f,s(p)jTu′0,r =
ϕ′†
p,s(F

T + σ(GT
1 + iGT

2 ))ϕ′
b,r√

2ωp(ωp +m)
, (B.14)

FT := (ωp +m)(B + C)εk,λ,

GT
1 := spAεk,λ,

GT
2 := (ωp +m)εk,λ × (B− C). (B.15)

Here, we just multiplied out the transversal 4-spinor ele-
ment (B.11), using the indicated 2-spinor decomposition
of the initial and final state, the standard representa-
tion (2.6) of α in (B.12), and the reduction formula for
products of Pauli matrices stated after (A.15). Similarly,
the longitudinal 4-spinor element in (B.11) reduces to

u′†f,s(p)jLu′0,r =
ϕ′†
p,s(F

L + σGL)ϕ′
b,r√

2ωp(ωp +m)
, (B.16)

FL : = (ωp +m)A, GL := sp(B + C).
(B.17)

The primed 2-spinors in the matrix elements (B.14)
and (B.16) are defined in (A.9), and the (real) coeffi-
cients A, B and C are stated in (B.13). These elements
can be squared by means of (A.16), if we there identify
k0 and q0 with the unit vectors p0 and b0, respectively.
The squared matrix elements are clumsy, but they simplify
when averaged over the initial spin index r and summed
over the final spin s, according to

〈jT,L〉2 :=
1
2

∑
r,s=±1

∣∣∣u′†f,s(p)jT,Lu′0,r
∣∣∣2. (B.18)

As noted, the matrix elements (B.14) and (B.16) are spe-
cial cases of the element squared in (A.16), and we readily
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find, after performing the summation (B.18),

ωp (ωp +m) 〈jT 〉2 = 1
2

(
FT2 +

∣∣GT
1

∣∣2 +
∣∣GT

2

∣∣2)

+ sp0

(
GT

1 F
T + GT

1 × GT
2

)
,

ωp (ωp +m) 〈jL〉2 = 1
2

(
FL2 +

∣∣GL
∣∣2) + sp0GLFL.

(B.19)

The right-hand side is independent of the spin variable s,
which drops out when substituting (B.15) and (B.17),
since s2 = 1. In this way, we arrive at,

〈jT 〉2 =
1

2ωpm

[
(Ap − (ωp +m)(B − C))2

m

ωp +m

+ 4mεk,λB(Aεk,λp + (ωp +m)εk,λC)
]
, (B.20)

〈jL〉2 =
1

2ωp(ωp −m)
(Ap + (ωp −m)(B + C))2, (B.21)

where the shortcuts A, B and C are defined in (B.13)
(with ω in A replaced by ωp), and the dispersion relations
stated after (B.13) apply.

We still need to find a parametrization of the matrix
elements (B.20) and (B.21) that renders them more acces-
sible. To this end, we substitute ωp = mγ, cf. after (3.18),
and define the shortcuts XT,L by

Ap − (ωp +m)(B− C) =: (p− k)−2(p2 − k2)−1XT ,

Ap + (ωp −m)(B + C) =: (p− k)−2(p2 − k2)−1XL,
(B.22)

so that, cf. (B.13),

XT = (γ − 1)(pk − p2)p + (γ + 1)(pk − k2)k,

XL = (γ + 1)(pk − k2)p + (γ − 1)(pk − p2)k. (B.23)

We introduce polar coordinates with k as polar axis, pk =
pk cos θ, and parametrize the absolute values as

p2 = m2(γ2 − 1), k2 = m2(γ − 1)2η2, (B.24)

where η ≥ 1 is a dimensionless parameter to be specified
by energy conservation. In this way, the squares of the
vectors (B.23) admit the parametrization,
∣∣XT

∣∣2 =m6(γ − 1)5(γ + 1)2
{
(η2 − 1)2a(θ)

+ η2 sin2 θ
[
2(1 − η2) + a(θ)

] }
,

∣∣XL
∣∣2 =m6η2(γ − 1)4(γ + 1)

{
4a(θ) + sin2 θ[2η2(γ − 1)2

− 2(γ + 1)2 + (γ2 − 1)a(θ)]
}
, (B.25)

where we have introduced the shortcut,

a(θ) := γ + 1 + (γ − 1)η2 − 2η
√
γ2 − 1 cos θ. (B.26)

The second term in (B.20) depends on the transversal po-
larization vectors, which satisfy εk,λk = 0, λ = 1, 2. This
allows the polar parametrization εk,λp = p sin θ cosϕ.
Here, we specify a linear transversal polarization, say,
λ = 1, for the incident tachyons, but this is not a re-
striction, as εk,1 can be arbitrarily chosen, cf. after (3.3).
Analogously to (B.22), we introduce the shortcut Y T ,
cf. (B.20),

4mεk,λB(Aεk,λp + (ωp +m)εk,λC) =:

(p − k)−4(p2 − k2)−1Y T , (B.27)

which is easily seen to admit the parametrization,

Y T = m4(γ − 1)2(γ + 1) sin2 θ cos2 ϕ

× [
2(γ + 1) − 2(γ − 1)η2 − (γ − 1)a(θ)

]
, (B.28)

where a(θ) is defined in (B.26). The two remaining fac-
tors on the right-hand side in (B.22) and (B.27), are
parametrized as, cf. (B.24),

p2 − k2 = 2m2(γ − 1)δ,

2δ : = γ + 1 − (γ − 1)η2,

(p − k)2 = m2(γ − 1)a(θ). (B.29)

When restoring units, a factor of c2/�2 has to be added to
the mass-squares in (B.29). To proceed further, we need
to specify the parameters η and δ. Energy conservation,
as discussed after (3.18), is invoked to relate these param-
eters to the electronic Lorentz factor and the tachyon-
electron mass ratio.

By virtue of (B.22–B.29) and (3.24), we can reassemble
the matrix elements (B.20) and (B.21) as,

〈jT,L〉2 =
�

4(γ + 1)
2c6m4δ2γ(γ − 1)a2(θ)

(
ΣT ,

η2

4
ΣL

)
, (B.30)

where we have introduced the dimensionless shortcuts
ΣT (θ, ϕ) and ΣL(θ) stated in (3.21) and (3.23). The di-
mensionless parameters η and δ are defined in (3.24) and
the angular factor a(θ), likewise dimensionless, in (B.26)
and (3.25). We have restored the units, so that 〈jT,L〉2 ∼
L2t2, where ωp ∼ 1/t and p, k ∼ 1/L. The spin averages
〈JT,L〉2 of the matrix elements

∣∣JT,Lr,s

∣∣2 in (B.11) are de-
fined after (3.19); they connect to the averages 〈jT,L〉2
in (B.30) as,

〈JT,L〉2 =
1
2

∑
r,s=±1

∣∣JT,Lr,s

∣∣2

=
64πq2α5

Zc
7m5

L3�5(p − k)4
(
c2〈jT 〉2, 〈jL〉2) , (B.31)

which readily follows from (B.18). Here, we substitute
(p − k)2 parametrized as in (B.29). The units have been
restored so that 〈JT,L〉2 ∼ (c2q2, q2), according to (B.8).
The wave vectors p and k have the dimension of inverse
length (the units in (B.29) have to be restored accord-
ingly), and the charge q2 relates to the dimensionless
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tachyonic fine structure constant as αq = q2/(4π�c). The
dimension of 〈jT,L〉2 is cm2 s2, already restored in (B.30),
and the factor L−3 in (B.31) stems from box quantiza-
tion, as pointed out in the remarks preceding (B.8). The
differential cross-sections (3.19) thus read,

dσT =
32αqα5

Zc
4m2

�2η

γ
√
γ2 − 1

〈
jT

〉2

(γ − 1)3a2(θ)
dΩ, (B.32)

dσL =
32αqα5

Zc
4m2

t

�2η3

γ
√
γ2 − 1

〈
jL

〉2

(γ − 1)5a2(θ)
dΩ, (B.33)

where we use η in (3.24) , a(θ) in (B.26), and the
matrix elements 〈jT,L〉2 in (B.30). This is summarized
in (3.20–3.25).

The total cross-sections are stated in (3.26) and (3.27).
The solid angle integration, over dΩ = sin θdθdϕ in (B.32)
and (B.33), is elementary, but the ensuing algebra is
lengthy. The azimuthal integration of the transversal sec-
tion amounts to

1
2π

∫ 2π

0

ΣTdϕ =
a (θ)

4 (γ − 1)2
m4
t

m4
+ sin2 θ

[
1 − 1

2
γ + 1
γ − 1

m2
t

m2

− 1
4 (γ − 1)2

m4
t

m4
+
a (θ)

4

(
(γ − 1) (γ − 2) +

3
2
m2
t

m2

)]
,

(B.34)

and the polar integration in the transversal as well as lon-
gitudinal section boils down to three integrals,
∫ π

0

sin θdθ
a3 (θ)

=
γχ

4δ4
,

∫ π

0

sin3 θdθ

a4 (θ)
=

1
12δ4

,

∫ π

0

sin3 θdθ

a3 (θ)
=

1
4η2

1
γ2 − 1

(
γχ

δ2
− c

2ηυγ
log

1 + ηυ/ (χc)
1 − ηυ/ (χc)

)
,

(B.35)

where the shortcuts χ, δ and η are defined in (3.24)
and (3.25).
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